If this was extended to score voting, I think it should elect the Condorcet winner in the single-winner case, if there is one. Otherwise, obviously it would have to choose between the candidates in some way, like other Condorcet methods do so it's not a big problem.
When there's more than one winner, what happens depends on how you interpret the scores. You could measure a voter's satisfaction by adding up the scores the voters have given to the elected candidates, but I think that might be unsatisfactory in a few ways. There's always debate about how to interpret scores and what they mean, and whether absolute numerical values should really be used in their raw form.
Instead, the scores could be used as layers of approval. This basically means that a voter's satisfaction with a candidate set is determined by the single highest score they've given to a candidate in the set, next best used as a tie-break, and so on. So for scores out of 5, a single 5 is better than multiple 4s etc.
This should keep it relatively simple. Also if candidates are elected sequentially, it should be simple enough to calculate the results.
I think this should be a decent enough method and I think I'd prefer it to things like Allocated Score and Sequentially Spent Score.
Obviously COWPEA Lottery using scores as layers of approval is God-tier in terms of criterion compliance, and very simple to implement, but it is non-deterministic, which might be too much for some people, so this method could be a good compromise.
Edit - You'd have to work out exactly how to measure the stability of a candidate set though. Let's say the first 2 candidates elected are AB. Then you need to test e.g. ABC, ABD, ABE etc. to find the 3rd candidate. But I think you might be able to test them against each individual candidate not in the set. So test ABC against, D, E, F etc. separately.
Edit 2 - You'd probably have to test each potential set against all the other subsets. So ABC would go against ABD, ABE etc., plus AD, AE, BD, BE, as well as D, E etc. Still not that many in the general scheme of things.